Biological Control

Jennifer E. Andreas, Joseph Milan, Carol Randall, and Joel Price

Revised March 2020

Classical biological weed control involves the introduction and management of selected host-specific natural enemies to reduce and suppress problematic weeds. The majority of the Pacific Northwest’s weeds are exotic, originating from other continents. These newly introduced plants, freed from the natural enemies found in their native range, gain a competitive advantage over native plants which allows the introduced plants to become weedy. Once weed populations become well distributed, herbicides, cultural, and mechanical methods of weed control are not always economical or physically able to meet weed management objectives. Classical weed biological control (biocontrol) is a weed management tool that is inexpensive, self-sustaining, and host-specific and may help reduce the negative impact of weeds, particularly where other control methods are not feasible.

Biocontrol differs from other weed control methods because it does not result in immediate weed population reductions. Successful biological control reduces the competitive ability of target weeds, allowing other plants to successfully compete with and suppress target weed populations through time. Unlike other weed control options, biocontrol rarely causes substantial weed population reductions in the initial year of release; however, successful biocontrol can result in significant, sustained weed reductions over a period of years. In the Pacific Northwest, biocontrol has been successful in controlling Mediterranean sage, St. Johnswort (Klamath weed), tansy ragwort, Dalmatian toadflax, purple loosestrife, diffuse knapweed, and leafy spurge. Preliminary information indicates emerging success for yellow toadflax using Mecinus janthinus.

Biocontrol is a slow process, and its efficacy is highly variable. Since it can take several years for biological control agent (BCA) populations to build to levels capable of weed suppression, many BCAs have not been present or studied long enough in the Pacific Northwest to determine their ability to control their host weed. Only after monitoring weed and BCA populations over time will the impact of newly introduced BCAs become evident.

BCAs impact weeds directly and indirectly. They directly impact weeds by destroying plant tissues and interfering with plant functions. BCAs cause indirect impact by increasing stress on the weed, which may reduce its ability to compete with desirable plants.

Biocontrol can be integrated with other management practices to reduce weed populations. For example, once weeds are weakened by BCAs, competitive plantings can reduce the availability of light, water, and nutrients to already stressed weed populations. In addition, satellite weed populations can be controlled by herbicides or physical means to reduce weed spread while BCAs attack the primary infestation.
Similar to other weed control methods, biocontrol is not a silver bullet; it will not eradicate host weeds since a BCA's survival depends on the presence of the host weed. Therefore, when using BCAs, expect weed populations to persist, but at much lower levels. After host weed populations decrease, populations of BCAs will correspondingly decrease. This is a natural cycle. A resurgence of weed populations may occur due to seed reserves in the soil, host weed plants missed by the BCA, and lagging populations of BCAs. In areas where the BCAs do not provide sufficient control, other weed control methods may need to be integrated to achieve desired results, or a search for additional BCAs may be pursued.

The BCAs released in the Pacific Northwest have been tested to ensure they are host-specific (i.e., they will only feed on the host weed species). Host-specificity testing is an expensive and time-consuming task that must be done before a BCA is allowed to be introduced into the United States. Some candidate BCAs, which could be effective in reducing host weed populations, may not be approved for introduction because they are not host-specific enough. A candidate BCA that is not sufficiently host-specific will be rejected for release in the United States to ensure that the BCA, in the absence of its host weed, will not move to crops, native flora, or endangered plant species.

Biocontrol of certain weeds may not work in your area, even if it does elsewhere. BCAs require specific conditions to survive and thrive. Climate variations (e.g. cold winters), plant biotype differences, and nearby insecticidal treatments (e.g. mosquito abatement or agricultural pest insect control) may account for some past failures. To maximize success, trained personnel should supervise and monitor biocontrol efforts. To monitor BCAs, the Standardized Impact Monitoring Protocol (SIMP) is recommended. More information on SIMP can be found by accessing the ISDA/BLM biocontrol website (http://invasivespecies.idaho.gov/bio-control-monitoring).

Once release sites for BCAs have been selected, protecting those areas from disturbance so BCAs can get established is essential. Initial BCA releases often consist of a small number of individual BCAs. Establishing collectable populations of the BCA for redistribution to other weed infestations can take three to five years, and is generally the first goal of a new biocontrol program. Care should be taken to ensure that BCAs being collected for redistribution are not diseased or parasitized, as this will reduce their efficacy in the new area. The current status and types of BCAs used in the Pacific Northwest are found in the tables in this section. It may be necessary to release BCAs over successive years to ensure that the BCAs become established and reach the population levels needed to result in target weed suppression. In addition, BCAs will likely need to be reestablished in areas where disturbances, like wildfire or flooding, may have killed previously established populations.

Biocontrol has many advantages but also some disadvantages. Advantages include: reducing herbicide residues in the environment; specificity on host weeds; use in areas with limited accessibility; long-term, self-perpetuating control; low cost per acre; host-finding capabilities; synchronizing BCAs to hosts weeds' life cycles; and the likelihood that host weeds will develop resistance to BCAs. Disadvantages of biocontrol include: the limited availability of BCAs from their native lands; the dependence of control on plant density; the slow rate at which control occurs and uncertainty of the level of control; biotype or climate matching; and host-specificity when host populations are low.

Biocontrol programs require consistent funding, expertise, and interdisciplinary cooperation. Biocontrol of weeds is not a perfect solution for all weed management programs. Interdisciplinary vegetation management teams are working strategically to find the best single or combination of weed control tools to minimize adverse environmental and socioeconomic impacts.

If you are considering importing BCAs from another state, be aware that federal its are may be required. For more information, contact your nearest USDA APHIS PPQ office, or visit https://www.aphis.usda.gov/aphis/ourfocus/planthealth/import-information/permits/regulated-organism-and-soil-permits/biological-control-organism-permits or your state weed biocontrol specialist. Permits for approved BCAs are free but take time to review and issue so it is best to apply well before your anticipated ship date.

Anyone who implements classical biological weed control is encouraged to follow the International Code of Best Practices for Classical Biological Control of Weeds, adopted by the delegates at the 1999 International Symposium on Biological Control of Weeds. The twelve codes for safe and effective biocontrol practices can be found at http://www.invasives.wsu.edu/Code.htm. Briefly, the key guidelines for biocontrol implementation includes:

- Releasing only safe and approved BCAs
- Using the most effective BCAs
- Documenting releases. State agencies can provide release forms and appreciate receiving release information for their records.
- Releasing only the intended target BCA by thoroughly removing all other insects and plants from collecting material.
- Stopping releases of ineffective BCA, or when control is achieved.
- Monitoring for impacts on the host weed, non-target species, and the environment.

As highlighted in the code of best practices, do not use non-APHIS approved natural enemies as BCAs because unapproved natural enemies have the potential to cause negative nontarget impacts. Examples include accidentally introduced species such as Larinus carinae (formerly L. planus, Canada thistle weevil), Chaetorellia succinea (yellow starthistle seedhead fly), Coniatus splendidulus (splendid tamarisk weevil), and Cassida rubiginosa (thistle tortoise beetle). In addition, BCAs against weedy thistle species (Rhinoclylus conicus and Trichostichus horridus) are no longer approved for interstate shipment because of concerns over potential impacts to native thistles. As of 2009, USDA APHIS suspended all permits for the interstate movement of the saltcedar beetle, Diorhabda carinulata (formerly D. elongata). The accidentally introduced houndstongue root weevil, Mogulones crucifer (formerly M. cruciger), is listed as a pest by USDA APHIS PPQ. Movement of M. crucifer may result in severe penalties, as stated in the PPQ Pest Alert:

Unauthorized collection, transportation, and release of Mogulones crucifer as a BCA against houndstongue in the United States is a criminal violation of the Endangered Species Act, with penalties for punishable offenses ranging from a maximum fine of up to $50,000 or imprisonment for 1 year, or both, and civil penalties of up to $25,000 per violation. These actions are also a violation of the Plant Protection Act, with fines of up to $250,000 per count for noncompliance, or up to $1 million per adjudication if the violation is willful.

The following tables contain lists of target weeds, and the current status of selected BCAs by state. For more information about accessing, using, and monitoring BCAs, contact your state department of agriculture or land-grant university.
Current Status of Biological Weed Control Agents in Idaho, Oregon, and Washington

<table>
<thead>
<tr>
<th>Weed</th>
<th>Biocontrol Agent</th>
<th>Oregon</th>
<th>Washington</th>
<th>Idaho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bindweed, field (Convolvulus arvensis)</td>
<td>Aceria malherbae</td>
<td>L M F L</td>
<td>L M F M</td>
<td>L L F L</td>
</tr>
<tr>
<td></td>
<td>Tyta lucutosa</td>
<td>L L P U</td>
<td>U U U U</td>
<td>L L U L</td>
</tr>
<tr>
<td>Broom, French (Genista monspessulana)</td>
<td>Bruchidius villosus</td>
<td>W H G M</td>
<td>— — — —</td>
<td>— — — —</td>
</tr>
<tr>
<td>Broom, Scotch (Cytisus scoparius)</td>
<td>Bruchidius villosus</td>
<td>W H G M</td>
<td>W H G M</td>
<td>L U U U</td>
</tr>
<tr>
<td></td>
<td>Exapion fuscrostre</td>
<td>W H G M</td>
<td>W H G L</td>
<td>L U U U</td>
</tr>
<tr>
<td></td>
<td>Leucoptera sputrophilliata</td>
<td>W M P L</td>
<td>L M P L</td>
<td>— — — —</td>
</tr>
<tr>
<td>Gorse (Ulex europaeus)</td>
<td>Exapion ulicis</td>
<td>W H G M</td>
<td>M H F I</td>
<td>— — — —</td>
</tr>
<tr>
<td></td>
<td>Sericothrips staphylinus*</td>
<td>— — — —</td>
<td>— — — —</td>
<td>— — — —</td>
</tr>
<tr>
<td></td>
<td>Tetranychus lintearius</td>
<td>W L P U</td>
<td>W L P U</td>
<td>— — — —</td>
</tr>
<tr>
<td>Hawkweeds (mouse-ear (Pilosella officinarum); orange (P. aurantiaca); whiplash (P. flagellaris))</td>
<td>Aulacidea subterminalis</td>
<td>— — — —</td>
<td>U U U U</td>
<td>— — — —</td>
</tr>
<tr>
<td></td>
<td>Cheilosis urbana*</td>
<td>— — — —</td>
<td>— — — —</td>
<td>— — — —</td>
</tr>
<tr>
<td>Hemlock, poison (Conium maculatum)</td>
<td>Agonopterix alstroemariana</td>
<td>W L P L</td>
<td>W L P L</td>
<td>L L P L</td>
</tr>
<tr>
<td>Knapweed, diffuse (Centaurea diffusa)</td>
<td>Bangasternus fausti</td>
<td>W H G M</td>
<td>W H G M</td>
<td>L L F L</td>
</tr>
<tr>
<td></td>
<td>Cyphocleonus achates</td>
<td>L L F L</td>
<td>L L M E</td>
<td>L L M G M</td>
</tr>
<tr>
<td></td>
<td>Larinus minutus</td>
<td>W H E M</td>
<td>W H E M</td>
<td>W H E M</td>
</tr>
<tr>
<td></td>
<td>Pterolone inspersa</td>
<td>L L L U F — — — F — — — —</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sphenoptera jugoslavica</td>
<td>W H G L</td>
<td>W H G M</td>
<td>W H G M</td>
</tr>
<tr>
<td></td>
<td>Urophora affinis</td>
<td>W H G M</td>
<td>W H G M</td>
<td>W H G M</td>
</tr>
<tr>
<td></td>
<td>Urophora quadri fasciata</td>
<td>W H G M</td>
<td>W H G M</td>
<td>W H G M</td>
</tr>
<tr>
<td>Knapweed, meadow (Centaurea x moncktonii; = C. jacea x nigra; = C. debeauxii; = C. pratensis)</td>
<td>Larinus minutus</td>
<td>L M F L</td>
<td>L M F L</td>
<td>— — — —</td>
</tr>
<tr>
<td></td>
<td>Larinus obsetus</td>
<td>W H G M</td>
<td>W H G M</td>
<td>— — — —</td>
</tr>
<tr>
<td></td>
<td>Urophora quadri fasciata</td>
<td>W L F L</td>
<td>L M F M</td>
<td>— — — —</td>
</tr>
<tr>
<td>Knapweed, Russian (Rhaponticum repens; = Acroptilon repens)</td>
<td>Aulacidea acroptilonica</td>
<td>L H U M</td>
<td>L M U M</td>
<td>L M U L</td>
</tr>
<tr>
<td></td>
<td>Joaapilla ivanikovi</td>
<td>L L L M</td>
<td>L M U M</td>
<td>L M U L</td>
</tr>
<tr>
<td></td>
<td>Subanguina picridis</td>
<td>L U U F — — — U U U U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranths)</td>
<td>Agapeta zoegana</td>
<td>L H G U</td>
<td>L M U L</td>
<td>W L U L</td>
</tr>
<tr>
<td></td>
<td>Bangasternus fausti</td>
<td>W L G M</td>
<td>L L U L</td>
<td>L U U L</td>
</tr>
<tr>
<td></td>
<td>Chaetorellia acrophi</td>
<td>L L F L</td>
<td>L U U L</td>
<td>L L U L</td>
</tr>
<tr>
<td></td>
<td>Cyphocleonus achates</td>
<td>W H F M</td>
<td>L M F L</td>
<td>L M G M</td>
</tr>
<tr>
<td></td>
<td>Larinus minutus</td>
<td>W H E M</td>
<td>W H E M</td>
<td>W H E M</td>
</tr>
<tr>
<td></td>
<td>Larinus obsetus</td>
<td>W H E M</td>
<td>L M G M</td>
<td>L M F L</td>
</tr>
<tr>
<td></td>
<td>Metzneria paucipunctella</td>
<td>W L F L</td>
<td>W L G L</td>
<td>W H G M</td>
</tr>
<tr>
<td></td>
<td>Sphenoptera jugoslavica</td>
<td>W H G L</td>
<td>W H G M</td>
<td>L L P L</td>
</tr>
<tr>
<td></td>
<td>Terellia virens</td>
<td>L M G L</td>
<td>L U U U</td>
<td>L U U U</td>
</tr>
<tr>
<td></td>
<td>Urophora affinis</td>
<td>W M G M</td>
<td>W H G M</td>
<td>W H G M</td>
</tr>
<tr>
<td></td>
<td>Urophora quadri fasciata</td>
<td>W H G M</td>
<td>W H G M</td>
<td>W H G M</td>
</tr>
<tr>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranths)</td>
<td>Galeruccella calmaniensis</td>
<td>W H E M</td>
<td>W H E M</td>
<td>W H E M</td>
</tr>
<tr>
<td></td>
<td>Galeruccella pusilla</td>
<td>W H E M</td>
<td>W H E M</td>
<td>W H E M</td>
</tr>
<tr>
<td></td>
<td>Hylobius transversovittatus</td>
<td>W H G M</td>
<td>L M F L</td>
<td>L L F L</td>
</tr>
<tr>
<td></td>
<td>Nanophyes marmoratus</td>
<td>W M F M</td>
<td>L M F M</td>
<td>W L F M</td>
</tr>
<tr>
<td>Weed</td>
<td>Biocontrol Agent</td>
<td>Oregon Distribution¹</td>
<td>Oregon Attack Rate²</td>
<td>Oregon Control³</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Puncturevine (Tribulus terrestris)</td>
<td>Micralarinus lareynii</td>
<td>L M F U</td>
<td>L M P U</td>
<td>L L P U</td>
</tr>
<tr>
<td></td>
<td>Micralarinus lypriformis</td>
<td>F — —</td>
<td>U U U L</td>
<td>L L P U</td>
</tr>
<tr>
<td>Ragwort, tansy (Jacobaea vulgaris; = Senecio jacobae)</td>
<td>Botanophila senecii</td>
<td>W H F M</td>
<td>W H G M</td>
<td>L L F U</td>
</tr>
<tr>
<td></td>
<td>Longitarsus jacobaei</td>
<td>W H E M</td>
<td>W H E M</td>
<td>W H G L</td>
</tr>
<tr>
<td></td>
<td>Tyria jacobaeae*</td>
<td>W H E M</td>
<td>— —</td>
<td>— N</td>
</tr>
<tr>
<td>Sage, Mediterranean (Salvia aethiopis)</td>
<td>Phrydichius tau</td>
<td>W H G L</td>
<td>L M L N</td>
<td>W H G M</td>
</tr>
<tr>
<td>St. Johnswort (Hypericum perforatum)</td>
<td>Agris hyperici</td>
<td>L H E L</td>
<td>L H E L</td>
<td>W H E M</td>
</tr>
<tr>
<td></td>
<td>Aplocera plagiata</td>
<td>W M P M</td>
<td>W M F L</td>
<td>W M F M</td>
</tr>
<tr>
<td></td>
<td>Chrysolina quadrigemina</td>
<td>W H E L</td>
<td>W H E M</td>
<td>W H E M</td>
</tr>
<tr>
<td>Saltcedar (Tamarix ramosissima)</td>
<td>Diorthaba carinulata *</td>
<td>W M F F</td>
<td>— U</td>
<td>U L H G L</td>
</tr>
<tr>
<td>Skeletonweed, rush (Chondrilla juncea)</td>
<td>Aceria chondrillae (formerly Eriophyes chondrillae)</td>
<td>W H E M</td>
<td>W H G M</td>
<td>W H E M</td>
</tr>
<tr>
<td></td>
<td>Bradyrhoa givoleolia</td>
<td>L S P U</td>
<td>U U U L</td>
<td>L M F L</td>
</tr>
<tr>
<td></td>
<td>Cystiphora schmidt</td>
<td>W H G M</td>
<td>W H G M</td>
<td>W H E M</td>
</tr>
<tr>
<td></td>
<td>Puccinia chondrillina</td>
<td>W M G L</td>
<td>W H G M</td>
<td>W H G M</td>
</tr>
<tr>
<td>Spurge, leafy (Euphorbia virga; = E. esula)</td>
<td>Apthona cyparissiae</td>
<td>L H E L</td>
<td>L L U L</td>
<td>L L G M</td>
</tr>
<tr>
<td></td>
<td>Apthona cewalinai</td>
<td>L H E M</td>
<td>L L U L</td>
<td>L L G M</td>
</tr>
<tr>
<td></td>
<td>Apthona flavia</td>
<td>L H F L</td>
<td>L M F L</td>
<td>L L G M</td>
</tr>
<tr>
<td></td>
<td>Apthona lacertosia</td>
<td>W H E M</td>
<td>L M U L</td>
<td>W H E M</td>
</tr>
<tr>
<td></td>
<td>Apthona nigriscutis</td>
<td>W H E M</td>
<td>L M F U</td>
<td>W H E M</td>
</tr>
<tr>
<td></td>
<td>Hyles euphorbiae</td>
<td>F — — — —</td>
<td>— —</td>
<td>— —</td>
</tr>
<tr>
<td></td>
<td>Oberea erythrocephala</td>
<td>W L G M</td>
<td>L U U U</td>
<td>W H E M</td>
</tr>
<tr>
<td>Starthistle, yellow (Centaurea solstitialis)</td>
<td>Bangasternus orientalis</td>
<td>W L P L</td>
<td>W L P L</td>
<td>W L P M</td>
</tr>
<tr>
<td></td>
<td>Ceratapion basicorne*</td>
<td>— — — — —</td>
<td>— —</td>
<td>— —</td>
</tr>
<tr>
<td></td>
<td>Chaetorella australis</td>
<td>W H E M</td>
<td>W M G M</td>
<td>W M G M</td>
</tr>
<tr>
<td></td>
<td>Eustenopus villusus</td>
<td>W H E M</td>
<td>W H E M</td>
<td>W H E M</td>
</tr>
<tr>
<td></td>
<td>Larinus curtus</td>
<td>W H E M</td>
<td>W M F L</td>
<td>W H E M</td>
</tr>
<tr>
<td></td>
<td>Puccinia jacea var. solstitialis</td>
<td>L S U U U U U U U U U U U</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urophora sirunaseva</td>
<td>W L P L</td>
<td>W L U L</td>
<td>W L U L</td>
</tr>
<tr>
<td>Thistle, bull (Cirsium vulgare)</td>
<td>Urophora stylyata</td>
<td>W H G M</td>
<td>L M F L</td>
<td>L L U L</td>
</tr>
<tr>
<td>Thistle, Canada (Cirsium arvense)</td>
<td>Hadraptorus litura (formerly C. corydon)</td>
<td>L H P U</td>
<td>L M F L</td>
<td>L L F L</td>
</tr>
<tr>
<td></td>
<td>Puccinia punctiformis</td>
<td>L H G L</td>
<td>U U U U</td>
<td>U U U U</td>
</tr>
<tr>
<td></td>
<td>Rhinocyllus conicus*</td>
<td>W H F N</td>
<td>W H F N</td>
<td>W F F N</td>
</tr>
<tr>
<td></td>
<td>Urophora cardui</td>
<td>W H P M</td>
<td>W H F M</td>
<td>L M F M</td>
</tr>
<tr>
<td>Thistle, Italian (Carduus pycnocephalus)</td>
<td>Cheilasia grossa (formerly C. corydon)</td>
<td>W H L L</td>
<td>— —</td>
<td>— N</td>
</tr>
<tr>
<td></td>
<td>Rhinocyllus conicus*</td>
<td>W H G N</td>
<td>— —</td>
<td>— N</td>
</tr>
<tr>
<td></td>
<td>Trichosirocalus horridus*</td>
<td>W H U N</td>
<td>— —</td>
<td>— N</td>
</tr>
<tr>
<td>Thistle, milk (Silybum marianum)</td>
<td>Rhinocyllus conicus*</td>
<td>W H G N</td>
<td>— —</td>
<td>— N</td>
</tr>
<tr>
<td></td>
<td>Trichosirocalus horridus*</td>
<td>L M G N</td>
<td>— —</td>
<td>— N</td>
</tr>
</tbody>
</table>
Biological Control Agents and Their Roles

Classical biological control agents introduced into the Pacific Northwest for the management of weeds and the general role of each biocontrol species.

HIGHLIGHTED SPECIES (GREY) ARE NOT APPROVED BY USDA-APHIS FOR INTER-STATE COLLECTION AND RE-DISTRIBUTION.

<table>
<thead>
<tr>
<th>Biocontrol Agent</th>
<th>Role</th>
<th>Weed Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceria chondrillae (formerly Eriophyes chondrillae)</td>
<td>bud gall mite</td>
<td>Skeletonweed, rush (Chondrilla juncea)</td>
</tr>
<tr>
<td>Aceria drabae</td>
<td>gall mite</td>
<td>Whitetop or hoary cress (Lepidium draba)</td>
</tr>
<tr>
<td>Aceria malherbea</td>
<td>bud/leaf gall mite</td>
<td>Bindweed, field (Convolvulus arvensis)</td>
</tr>
<tr>
<td>Agonopterix alstroemeriana</td>
<td>defoliating moth</td>
<td>Hemlock, poison (Conium maculatum)</td>
</tr>
<tr>
<td>Agapeta zoegana</td>
<td>root-boring moth</td>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranthos)</td>
</tr>
<tr>
<td>Agrilus hyperici</td>
<td>root-boring beetle</td>
<td>St. Johnswort (Hypericum perforatum)</td>
</tr>
<tr>
<td>Aplocera plagia</td>
<td>defoliating moth</td>
<td>St. Johnswort (Hypericum perforatum)</td>
</tr>
<tr>
<td>Aphthona cyparissiae</td>
<td>root/defoliating flea beetle</td>
<td>Spurge, leafy (Euphorbia esula, = E. virgata)</td>
</tr>
<tr>
<td>Aphthona czwalinai</td>
<td>root/defoliating flea beetle</td>
<td>Spurge, leafy (Euphorbia esula, = E. virgata)</td>
</tr>
<tr>
<td>Aphthona flav</td>
<td>root/defoliating flea beetle</td>
<td>Spurge, leafy (Euphorbia esula, = E. virgata)</td>
</tr>
<tr>
<td>Biocontrol Agent</td>
<td>Role</td>
<td>Weed Species</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Aphthona lacertosa</td>
<td>root/defoliating flea beetle</td>
<td>Spurge, leafy (Euphorbia esula, = E. virgata)</td>
</tr>
<tr>
<td>Aphthona nigriscutis</td>
<td>root/defoliating flea beetle</td>
<td>Spurge, leafy (Euphorbia esula, = E. virgata)</td>
</tr>
<tr>
<td>Aulacidea acroptilonica</td>
<td>gall wasp</td>
<td>Knapweed, Russian (Rhaponticum repens; = Acroptilon repens)</td>
</tr>
<tr>
<td>Aulacidea subterminalis</td>
<td>gall wasp</td>
<td>Hawkweeds {mouse-ear (Pilosella officinarum); orange (P. aurantiaca); whirlash (P. flagellaris)}</td>
</tr>
<tr>
<td>Bangasternus fausti</td>
<td>seed head weevil</td>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranthos); knapweed, diffuse (C. diffusa)</td>
</tr>
<tr>
<td>Bangasternus orientalis</td>
<td>seed head weevil</td>
<td>Starthistle, yellow (Centaurea solstitialis)</td>
</tr>
<tr>
<td>Botanophila seneciella</td>
<td>seed head fly</td>
<td>Ragwort, tansy (Jacobaea vulgaris; = Senecio jacobaea)</td>
</tr>
<tr>
<td>Brachypterolus pulicarius</td>
<td>flower beetle</td>
<td>Toadflax, yellow (Linaria vulgaris); toadflax, Dalmatian (L. dalmatica)</td>
</tr>
<tr>
<td>Bradyrrhoa gilveolella</td>
<td>root-boring moth</td>
<td>Skeletonweed, rush (Chondrilla juncea)</td>
</tr>
<tr>
<td>Bruchidius villosus</td>
<td>seed beetle</td>
<td>Broom, Scotch (Cytisus scoparius); broom, French (Genista monspessulana)</td>
</tr>
<tr>
<td>Calophasia lunula</td>
<td>defoliating moth</td>
<td>Toadflax, yellow (Linaria vulgaris); toadflax, Dalmatian (L. dalmatica)</td>
</tr>
<tr>
<td>Ceratapion basicorne</td>
<td>root crown weevil</td>
<td>Starthistle, yellow (Centaurea solstitialis)</td>
</tr>
<tr>
<td>Chaetorellia acrolophi</td>
<td>seed head fly</td>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranthos)</td>
</tr>
<tr>
<td>Chaetorellia australis</td>
<td>seed head fly</td>
<td>Starthistle, yellow (Centaurea solstitialis)</td>
</tr>
<tr>
<td>Cheilosia grossa (formerly C. corydon)</td>
<td>stem fly</td>
<td>Thistle, slenderflower (Cardus tenuiflorus); thistle, Italian (C. pycnocephalus)</td>
</tr>
<tr>
<td>Cheilosia urbana</td>
<td>root-boring fly</td>
<td>Hawkweeds (Pilosella aurantiaca, P. caespitosa, P. flagellaris, P. floribunda, P. glomerata, P. officinarum, P. piloselloides)</td>
</tr>
<tr>
<td>Chrysolina hyperici</td>
<td>defoliating beetle</td>
<td>St. Johnswort (Hypericum perforatum)</td>
</tr>
<tr>
<td>Chrysolina quadrigemina</td>
<td>defoliating beetle</td>
<td>St. Johnswort (Hypericum perforatum)</td>
</tr>
<tr>
<td>Cyphocleonus achates</td>
<td>root-boring/gall weevil</td>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranthos); knapweed, diffuse (C. diffusa)</td>
</tr>
<tr>
<td>Cystiphora schmidti</td>
<td>stem/leaf gall midge</td>
<td>Skeletonweed, rush (Chondrilla juncea)</td>
</tr>
<tr>
<td>Diorhabda carinulata</td>
<td>leaf beetle</td>
<td>Saltcedar (Tamarix ramosissima)</td>
</tr>
<tr>
<td>Euhrychiopsis lecontei</td>
<td>stem weevil</td>
<td>Watermilfoil, Eurasian (Myriophyllum spicatum)</td>
</tr>
<tr>
<td>Eustenopus villosus</td>
<td>seed head weevil</td>
<td>Starthistle, yellow (Centaurea solstitialis)</td>
</tr>
<tr>
<td>Exapion fusciorostre</td>
<td>seed weevil</td>
<td>Broom, Scotch (Cytisus scoparius)</td>
</tr>
<tr>
<td>Exapion ulicis</td>
<td>seed weevil</td>
<td>Gorse (Ulex europaeus)</td>
</tr>
<tr>
<td>Galericula calamiensis</td>
<td>leaf beetle</td>
<td>Loosestrife, purple (Lythrum salicaria)</td>
</tr>
<tr>
<td>Galericula pusilla</td>
<td>leaf beetle</td>
<td>Loosestrife, purple (Lythrum salicaria)</td>
</tr>
<tr>
<td>Hadroplontus litura</td>
<td>crown/stem-mining weevil</td>
<td>Thistle, Canada (Cirsium arvense)</td>
</tr>
<tr>
<td>Hyles euphorbae</td>
<td>defoliating moth</td>
<td>Spurge, leafy (Euphorbia virgata; = E. esula)</td>
</tr>
<tr>
<td>Hylobius transversovittatus</td>
<td>root-boring weevil</td>
<td>Loosestrife, purple (Lythrum salicaria)</td>
</tr>
<tr>
<td>Jaapiella ivannikovi</td>
<td>shoot tip gall midge</td>
<td>Knapweed, Russian (Rhaponticum repens; = Acroptilon repens)</td>
</tr>
<tr>
<td>Larinus curtus</td>
<td>seed head weevil</td>
<td>Starthistle, yellow (Centaurea solstitialis)</td>
</tr>
<tr>
<td>Larinus minutus</td>
<td>seed head weevil</td>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranthos); knapweed, meadow (C. x moncktonii; = C. jacea x nigra; = C. debeauxii; = C. pratensis); knapweed, diffuse (C. diffusa)</td>
</tr>
<tr>
<td>Larinus obtusus</td>
<td>seed head weevil</td>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranthos); knapweed, meadow (C. x moncktonii; = C. jacea x nigra; = C. debeauxii; = C. pratensis)</td>
</tr>
<tr>
<td>Biocontrol Agent</td>
<td>Role</td>
<td>Weed Species</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Leucoptera spartifoliella</td>
<td>twig mining moth</td>
<td>Broom, Scotch (Cytisus scoparius)</td>
</tr>
<tr>
<td>Longitarsus jacobiaceae</td>
<td>root/defoliating flea beetle</td>
<td>Ragwort, tansy (Jacobaea vulgaris; = Senecio jacobaea)</td>
</tr>
<tr>
<td>Mecinus janthiniformis (formerly M. janthinus)</td>
<td>stem-boring weevil</td>
<td>Toadflax, Dalmatian (Linaria dalmatica)</td>
</tr>
<tr>
<td>Mecinus janthinus</td>
<td>stem-boring weevil</td>
<td>Toadflax, yellow (Linaria vulgaris)</td>
</tr>
<tr>
<td>Metzneria paucipunctella</td>
<td>seed head moth</td>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranthos)</td>
</tr>
<tr>
<td>Micolarinus lareynii</td>
<td>seed weevil</td>
<td>Puncturevine (Tribulus terrestris)</td>
</tr>
<tr>
<td>Micolarinus lypniformis</td>
<td>stem weevil</td>
<td>Puncturevine (Tribulus terrestris)</td>
</tr>
<tr>
<td>Nanophyes marmoratus</td>
<td>flower bud weevil</td>
<td>Loosestrife, purple (Lythrum salicaria)</td>
</tr>
<tr>
<td>Oberea erythrocephala</td>
<td>stem-boring beetle</td>
<td>Spurge, leafy (Euphorbia virgata; = E. esula)</td>
</tr>
<tr>
<td>Phrydichius tau</td>
<td>crown/root weevil</td>
<td>Sage, Mediterranean (Salvia aethiopis)</td>
</tr>
<tr>
<td>Pterolanche inspersa</td>
<td>root-boring moth</td>
<td>Knapweed, diffuse (Centaurea diffusa)</td>
</tr>
<tr>
<td>Puccinia chondrillina</td>
<td>rust fungus</td>
<td>Skeletonweed, rush (Chondrilla juncea)</td>
</tr>
<tr>
<td>Puccinia jacea var. solstitialis</td>
<td>rust fungus</td>
<td>Starthistle, yellow (Centaurea solstitialis)</td>
</tr>
<tr>
<td>Puccinia punctiformis</td>
<td>rust fungus</td>
<td>Thistle, Canada (Cirsium arvense)</td>
</tr>
<tr>
<td>Rhinocyllus conicus a</td>
<td>seed head weevil</td>
<td>Thistle, slenderflower (Carduas tenuiflorus); thistle, plumless (C. acanthoides); thistle, musk (C. nutans); thistle, milk (Silybum marianum); thistle, Italian (C. pycnocephalus); thistle, Canada (Cirsium arvense)</td>
</tr>
<tr>
<td>Rhinusus antirhini (formerly Gymnetron antirhini)</td>
<td>seed head weevil</td>
<td>Toadflax, yellow (Linaria vulgaris)</td>
</tr>
<tr>
<td>Rhinusus pilosa b</td>
<td>shoot-galling weevil</td>
<td>Toadflax, yellow (Linaria vulgaris)</td>
</tr>
<tr>
<td>Sericotherips staphylinus t</td>
<td>leaf thrips</td>
<td>Gorse (Ulex europaeus)</td>
</tr>
<tr>
<td>Sphenoptera jugoslavica</td>
<td>root-boring/gall beetle</td>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranthos); knapweed, diffuse (C. diffusa)</td>
</tr>
<tr>
<td>Subanguina picridis</td>
<td>stem/leaf gall nematode</td>
<td>Knapweed, Russian (Rhaponticum repens; = Acrtoil repens)</td>
</tr>
<tr>
<td>Terellia virens</td>
<td>seed head fly</td>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranthos)</td>
</tr>
<tr>
<td>Tetranychus lintearius</td>
<td>spider mite</td>
<td>Gorse (Ulex europaeus)</td>
</tr>
<tr>
<td>Trichosiocalus horridus a</td>
<td>root/crown weevil</td>
<td>Thistle, slenderflower (Carduas tenuiflorus); thistle, plumless (C. acanthoides); thistle, musk (C. nutans); thistle, Italian (C. pycnocephalus)</td>
</tr>
<tr>
<td>Tyria jacobaeae b</td>
<td>defoliating moth</td>
<td>Ragwort, tansy (Jacobaea vulgaris; = Senecio jacobaea)</td>
</tr>
<tr>
<td>Tyta luctuosa</td>
<td>defoliating moth</td>
<td>Bindweed, field (Convolvulus arvensis)</td>
</tr>
<tr>
<td>Urophora affinis</td>
<td>seed head gall fly</td>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranthos); knapweed, diffuse (C. diffusa)</td>
</tr>
<tr>
<td>Urophora cardui</td>
<td>stem gall fly</td>
<td>Thistle, Canada (Cirsium arvense)</td>
</tr>
<tr>
<td>Urophora quadrifasciata</td>
<td>seed head gall fly</td>
<td>Knapweed, spotted (Centaurea stoebe; = C. stoebe ssp. micranthos); knapweed, meadow (C. x moncktonii; = C. jacea x nigra; = C. debeauhi; = C. pratensis); knapweed, diffuse (C. diffusa)</td>
</tr>
<tr>
<td>Urophora sirunaseva</td>
<td>seed head gall fly</td>
<td>Starthistle, yellow (Centaurea solstitialis)</td>
</tr>
<tr>
<td>Urophora stylata</td>
<td>seed head gall fly</td>
<td>Thistle, bull (Cirsium vulgaris)</td>
</tr>
</tbody>
</table>

a Rhinocyllus conicus and Trichosiocalus horridus are not recommended. They attack native thistles and interstate permits are suspended.
b Tyria jacobaeae is not recommended east of the Cascades, particularly in Idaho. It attacks several native plant species.
c Diorhabda carinulata (formerly D. elongata) interstate shipment permits have been suspended.
d Larinus curtus may be infected with a disease that can reduce insect populations. It should not be redistributed to avoid spreading the disease to healthy L. curtus populations.
e Eurychopus lecontei is a native insect, and thus, not a classical biological control agent. The weevil is co-evolved with native milfoil, Myriophyllum spicatum, but also attacks Eurasian watermilfoil, M. spicatum. It is naturally-occurring at many lakes in the Pacific Northwest but is not currently available for redistribution.
f Aceria drabae, Aulacidea subterminalis, Ceratapion basicorne, Cheilosia urbana, Rhinusus pilosa, and Sericotherips staphylinus are new biocontrol agents that are still undergoing testing and establishment. It is unclear when they will be available for widespread distribution or how effective they will be on their host plant.
Using Pesticides Safely

Ronda E. Hirnyck

Revised March 2020

Always Read the Label

The single most important approach to pesticide safety is to read the pesticide label before each use and then follow the directions. If still in doubt after reading the label, contact a person qualified to help evaluate the hazard of the chemical and its use. Qualified people include extension specialists, county educators, pesticide product representatives, and retailers.

Pesticides are toxic and should be handled with care—but pesticides can be used safely if you follow recommended precautions. Follow all label requirements and strongly consider any recommendations for additional personal protective clothing and equipment. In addition to reading and following the label, other major factors in the safe and effective use of pesticides are the pesticide applicator’s qualifications, common sense, and good attitude. Always take all safety precautions when using pesticides.

In case of accidents involving pesticides, see your doctor at once. It will help your doctor to know exactly which pesticide is involved. The label on the container gives this information. Take to the physician the pesticide label or information from the label, such as the product name, registration number of the U.S. Environmental Protection Agency (EPA), common name and percentage of active ingredient, and first aid instructions. If the label cannot be removed, take along the pesticide container (if not contaminated), but do not take it into the hospital or doctor’s office.

Pesticide Safety Checklist

- Use pesticides only when necessary and as part of an Integrated Pest Management (IPM) program.
- Always read the label and follow the instructions.
- Do not allow children to play around sprayers or mixing, storage, and disposal areas.
- Wear appropriate protective clothing and equipment.
- Never eat, drink, or smoke while handling pesticides.
- Avoid drift into non-target areas and pesticide runoff into streams, rivers, lakes, irrigation ponds and canals.
- Avoid spilling materials on skin or clothing.
- Have access to clean water, soap, and first aid supplies.
- Keep pesticides in a dry and locked storage area away from food and feed.
- Triple rinse or pressure rinse empty containers and dispose or recycle in accordance with state and local regulations.
- Stay out of recently sprayed areas until spray has dried, and observe the restricted entry intervals (REI) specified on the pesticide label.
- Follow the pre-harvest interval (PHI) on pesticide label before harvesting crops or gardens and before allowing livestock to graze fields.

What to Do in Case of Pesticide Poisoning

Follow the specific first-aid instructions on the pesticide label.

If someone has unexplained symptoms that MAY be related to pesticides, DO NOT DELAY. Get medical advice quickly:

- Call the Poison Center (toll free) 1-800-222-1222 or call your doctor.
- Take the pesticide label (or information from the label—the product name, EPA registration number, common name, percentage of active ingredient, and first aid instructions) to the physician. If the label cannot be removed, take the pesticide container (if not contaminated), but do not take it into the hospital or doctor’s office.

Information regarding pesticides can also be obtained from the National Pesticide Information Center (NPIC)

1-800-888-7378 (7:30 am to 3:30 pm PST, Monday - Friday). Email: at npic@ace.orst.edu or visit www.npic.orst.edu at any time

Information is printed in English and Spanish and available in over 170 languages through the use of an over-the-phone language service.

If labeling instructions are not available, follow these general guidelines for first aid.

- The best first aid in pesticide emergencies is to remove the source of pesticide exposure as quickly as possible. Removing the victim from the source not only protects him or her from further poisoning but also protects you while you administer first aid.
- First aid is the initial effort to help a victim while medical help is on the way. If you are alone with the victim, make sure the victim is breathing and is not being further exposed to the pesticide before you call for emergency help. Apply artificial respiration if the victim is not breathing. Do not become exposed to the pesticide yourself while you are trying to help.
- Pesticide on skin—Drench contaminated exposed skin with plenty of water. Remove personal protective equipment and contaminated clothing. Wash skin and hair with a mild detergent and water. Dry victim and keep him or her comfortable.
- Pesticide in eye—Wash the eye quickly but gently with clean running water. Rinse eye for 15 minutes or more.
- Inhaled pesticide—Get the victim to fresh air immediately. Loosen tight clothing on the victim that would constrict breathing. Apply artificial respiration if the victim is not breathing. If pesticide or vomit is in the victim’s mouth or on the face, avoid direct contact and use a shaped airway tube, if available, for mouth-to-mouth resuscitation.
- Pesticide in mouth or swallowed—Rinse mouth with plenty of water. Do not induce vomiting or give high-potency activated charcoal unless a physician or the label tells you to do so.
- Induce vomiting only if the label indicates. Position the victim face down or kneeling forward and carefully put a
finger or the blunt end of a spoon at the back of the victim’s throat.

- **Do not induce vomiting** if the victim is unconscious or convulsing, or if the victim has swallowed a corrosive poison or an emulsifiable concentrate or oil solution.

- **Atropine should be administered only by a physician.** It can be poisonous if misused and can mask the symptoms of poisoning, thus delaying proper treatment.

- **First-aid kit**—A properly equipped portable first-aid kit can be important in a pesticide emergency. Make sure one is available at each work site.

Personal Protective Equipment (PPE) Definitions

Personal protective equipment (PPE)—Apparel and devices worn to protect the body from contact with pesticides or pesticide residues include:

- **Coveralls**
- Chemical-resistant suits, gloves, footwear, aprons, and headgear
- **Protective eyewear**
- **Respirators**

While the following attire is not defined as PPE, the labeling might require pesticide handlers or early-entry workers to wear it for some tasks:

- Long-sleeved shirts
- Long pants
- Shoes and socks
- Other items of regular work clothing

If such non-PPE attire is required, the employer must make sure that it is worn.

Chemical-resistant—Allows no measurable amount of the pesticide to move through the material during use.

Waterproof—Allows no measurable movement of water (or water-based solutions) through the material during use.

Chemical-resistant suit—A loosely fitting one- or two-piece chemical-resistant garment that covers, at a minimum, the entire body except for the head, hands, and feet.

Coverall—A loosely fitting one- or two-piece garment that covers, at a minimum, the entire body except the head, hands, and feet. Coveralls are made of fabric, such as cotton or a cotton–polyester blend, and are not chemical resistant. The pesticide labeling might specify that the coveralls be worn over a layer of clothing. (Allowable substitution: A chemical-resistant suit can be worn instead of coveralls and any required inner layer of clothing.)

Chemical-resistant apron—One made of chemical-resistant material, covering the front of the body from mid-chest to knees. (Allowable substitution: if a chemical-resistant suit is worn, no apron is required.)

Gloves—Hand coverings of the type listed on the pesticide label. Gloves or glove linings made of leather, cotton, or other absorbent materials cannot be worn for handling or early-entry activities unless these materials are listed on the pesticide labeling as accept-able for such use. (Allowable substitution: Leather gloves may be worn over chemical-resistant liners for tasks with sharp-thorned plants. After leather gloves have been worn for such work, however, they may be worn only with chemical-resistant liners and may not be worn for any other use.

Chemical-resistant footwear—Chemical-resistant shoes, boots, or shoe coverings worn over shoes or boots. (Allowable substitution: Leather boots may be worn in rough terrain if chemical-resistant footwear with appropriate durability and tread is unavailable.)

Protective eyewear—Goggles, face shield, or safety glasses with front, brow, and temple protection. (Allowable substitution: A full-face respirator.)

Chemical-resistant headgear—A chemical-resistant hood or hat with a wide brim.

Minimum Personal Protective Equipment (PPE) and Work Clothing for Handling Activities

<table>
<thead>
<tr>
<th>Route of Exposure</th>
<th>Toxicity category of end-use product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I (Danger)</td>
</tr>
<tr>
<td>Dermal toxicity</td>
<td>Coveralls worn over long-sleeve shirt and long pants Socks Chemical-resistant footwear Chemical-resistant gloves</td>
</tr>
<tr>
<td>or skin irritation</td>
<td></td>
</tr>
<tr>
<td>potential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II (Warning)</td>
</tr>
<tr>
<td></td>
<td>Coveralls worn over short-sleeve shirt and short pants Socks Chemical-resistant footwear Chemical-resistant gloves</td>
</tr>
<tr>
<td></td>
<td>III (Caution)</td>
</tr>
<tr>
<td></td>
<td>Long-sleeve shirt and long pants Socks Shoes Chemical-resistant gloves</td>
</tr>
<tr>
<td></td>
<td>IV (Caution)</td>
</tr>
<tr>
<td></td>
<td>Long-sleeve shirt and long pants Socks Shoes No minimum</td>
</tr>
<tr>
<td>Inhalation toxicity</td>
<td>Respiratory protection device</td>
</tr>
<tr>
<td>Eye irritation potential</td>
<td>Protective eyewear</td>
</tr>
</tbody>
</table>

1If dermal toxicity and skin irritation potential are in different toxicity categories, protection shall be based on the more toxic (lower numbered) category.
The following table lists EPA chemical resistance categories for selected personal protective materials of gloves (Oregon OSHA: http://www.orosha.org/publications/pesticidepubs.html)

Chemical Resistance Categories for Selected Personal Protective Materials

<table>
<thead>
<tr>
<th>Selection category listed on pesticide label</th>
<th>Type of personal protective material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barrier laminate</td>
</tr>
<tr>
<td>A (dry and water-based)</td>
<td>High</td>
</tr>
<tr>
<td>B</td>
<td>High</td>
</tr>
<tr>
<td>C</td>
<td>High</td>
</tr>
<tr>
<td>D</td>
<td>High</td>
</tr>
<tr>
<td>E</td>
<td>High</td>
</tr>
<tr>
<td>F</td>
<td>High</td>
</tr>
<tr>
<td>G</td>
<td>High</td>
</tr>
<tr>
<td>H</td>
<td>High</td>
</tr>
</tbody>
</table>

Pesticide Spills and Cleanup

Handling Spills

The best way to handle a spill is to prevent it from happening. Review your process for using, transporting, and storing pesticides to identify areas for additional training or precautions. Train workers to take the necessary actions if a spill should occur. Prior training on how to limit a spill and then safely clean it up is invaluable. Accidents most commonly happen when pesticides are being transported or when pesticide containers have leaked in storage.

Pesticide spills require immediate action. Keep a spill cleanup kit immediately available at all locations where pesticides are handled, transported, or stored, because you will not have time to locate all the necessary items before a significant amount of contamination has occurred. Important items in a typical spill kit include:

- Telephone numbers for emergency assistance
- Personal protective clothing and equipment as required by the label, including:
 - Sturdy gloves, footwear, and apron that are chemically resistant to most pesticides
 - Protective eyewear
 - An appropriate respirator, if any of the pesticides requires using a respirator during handling or for spill cleanup
- Containment “snakes” to confine the leak or spill to a small area
- Absorbent materials such as spill pillows, absorbent clay, dry peat moss, sawdust, “kitty litter,” activated charcoal, vermiculite, or paper to soak up liquid spills
- Sweeping compound to keep dry spills from drifting or wafting during cleanup
- A shovel, broom, and dustpan made from non-sparking and nonreactive material (foldable brooms and shovels are handy because they can be carried easily)
- Heavy-duty detergent
- Fire extinguisher rated for all types of fires
- Any other spill cleanup items specified on the labeling of any products you use regularly
- Sturdy plastic container that will hold the entire volume of the largest pesticide container being handled and that can be tightly closed
- Highway flares (do NOT use flares near flammable material)

All these items should be stored in the sturdy plastic container and kept easily accessible, clean, and in working order until a spill occurs.

Response to a pesticide spill may vary with size and location of the spill.

You must know how to respond correctly to a spill. Stopping large leaks or spills is often not simple. If you cannot manage a spill by yourself, get help. Even a spill that appears to be minor can endanger you, other people, and the environment if not handled correctly. Never leave a spill unattended. When in doubt, get help.

The faster you can contain, absorb, and dispose of a spill, the less chance it will cause harm. Clean up spills immediately. Even minor dribbles or spills should be cleaned up as soon as possible to keep unprotected persons or animals from being exposed.

A good way to remember the steps for a spill emergency is the “three C’s”: Control, Contain, Clean up.

1. **Control** the spill situation: Protect yourself, stop the leak, protect others, and stay at the site.
2. **Contain** the spill: Confine the spill, protect water sources, absorb liquids, and cover dry materials.
3. **Clean up** the spill, decontaminate the spill site, neutralize spill site, decontaminate equipment, and decontaminate your PPE.
How to Properly Clean Pesticide Containers

Unrinsed or contaminated empty pesticide containers are considered hazardous waste, unless a pesticide distributor or manufacturer will accept them for refilling. Hazardous waste is more difficult and more expensive to dispose of than solid waste.

Clean, dry containers are considered solid waste and can be disposed of in a state-permitted solid waste site. Clean, dry containers may be recycled and it is recommended that the containers are recycled through the state pesticide container recycling program. Only dry, properly rinsed containers are accepted at collection sites, so thoroughly rinse all residues from the containers immediately after use. Properly rinsing and handling empty pesticide containers is very important, because it:

- Protects humans by removing hazardous materials
- Prevents sources of environmental contamination
- Saves money by putting all product into the spray tank

Triple/Multiple Rinsing

PLASTIC AND METAL CONTAINERS (JUGS)

- Empty the container's contents into a spray tank, turning the container so that any product trapped in the handle can flow out. Once flow is down to a drip, drain the container an additional 30 seconds.
- Immediately begin rinsing. Do not wait, or the product may become difficult to remove.
- Fill the empty container one-quarter full of clean water.
- Replace the cap on the container. With the container opening facing to your left, shake the container about 6 inches left to right. Shake the container about twice per second for 30 seconds.
- Drain rinse water into spray tank as described above.
- Fill the empty container one-quarter full of clean water a second time.
- Recap the container. With the opening of the container pointed toward the ground, shake the container about 6 inches up and down. Then drain the rinse water into the spray tank.
- Finally, fill the empty container one-quarter full for a third time with clean water. Recap the container. With the container in the normal upright position, shake the container about 6 inches up and down. Pour the rinse water into the spray tank.
- Carefully rinse residue from the outside of the container into the spray tank.
- Carefully rinse cap over spray tank opening.
- Look closely at the container inside and out to make sure that all pesticide has been removed.
- Allow the containers to dry.
- Store cleaned jugs and caps where they will be protected from rain until they can be recycled or disposed of properly.
- Oregon requires that 1- and 5-gallon metal containers be punctured at least three times with 1-inch holes and then crushed.
- Oregon law requires rinsing the containers as many times as is necessary with an appropriate diluent (solvent) to get the container clean.

DRUMS

- Empty the drum as much as possible.
- Fill the drum one-quarter full with water. Replace and tighten bungs.
- Tip the drum on its side and roll it back and forth, ensuring at least one complete revolution, for 30 seconds.
- Stand the drum on its end and tip it back and forth several times to rinse the corners.
- Turn the drum over on its other end and repeat this procedure.
- Carefully empty the rinsate into the spray tank.
- Repeat this procedure until the rinse water runs clear.
- Carefully rinse cap over spray tank opening and then dispose of appropriately as regular solid waste.
- Look closely at the containers inside and out to make sure all pesticide has been removed.

Think Safety!

Unrinsed pesticide containers still can hold enough material to harm people and the environment. The person cleaning the containers should observe these precautions:

- Read and understand all safety and environmental precautions on the pesticide label.
- Wear eye protection such as goggles or a face shield.
- Wear chemical-resistant gloves that will neither absorb pesticide or rinse water nor let the material contact the skin.
- Wear chemical-resistant apron, gloves, and footwear or chemical-resistant covers over shoes or boots.

The best way to dispose of rinsate is to add it in the spray mixture and apply it according to the label directions. Rinsate also can be collected for later use in a spray mix or for disposal. Do not mix different pesticide rinsates. Label each storage container clearly. Do not dump rinsate on the ground or into storm drains.

Reporting Spills

Report pesticide spills as well as pesticide-related fires and poisonings first to 9-1-1 for immediate response. Then report to the appropriate number below.

Idaho Report all spills, fires, and poisonings to the EMS dispatcher: 800-632-8000 (in Idaho only).

Oregon Report spills to the Oregon Emergency Response System: 800-452-0311 (in Oregon) 503-378-6377 (Salem area)

Washington Report all spills, fires, and poisonings to the Department of Emergency Management: 800-258-5990.

Report spills or discharges from containment areas to the nearest regional office of the Department of Ecology; find locations online at http://www.ecy.wa.gov

Additional help with chemical emergencies, including pesticide emergencies involving spills, leaks, fires, or exposures, can be obtained from the Chemical Transportation Emergency Center:

CHEMTREC, 800-424-9300

Cleaning, Recycling, and Disposing of Agricultural Pesticide Containers

A website with helpful container-rinsing information:

- Ag Container Recycling Council http://www.acrecycle.org

A11 PNW Weed Management Handbook
• Puncture the base of the drum with a drill so that it cannot be reused.
• Allow drums to dry.
• Store drums where they will be protected from rain until they can be recycled or disposed of properly.
• Oregon requires that the tops and bottoms of 30- and 55-gallon containers be removed and the container flattened after it has dried.
• Oregon law requires persons cleaning pesticide containers to rinse the containers as many times as is necessary with an appropriate diluent (solvent) to get the container clean.

Pressure Rinsing

This method continuously washes the inside of the container and drains into the spray tank. A pressure nozzle punctures and rinses the container in one step. It is easier and more effective than triple/multiple rinsing.

CONTAINERS (JUGS)

- Empty contents of container into a spray tank, turning the container so that any product trapped in the handle can flow out. Once flow is down to a drip, drain the container an additional 30 seconds.
- Immediately begin rinsing. Do not wait, or the product may become difficult to remove.
- Hold the container so the opening can drain into the spray tank.
- Force the tip of the pressure nozzle through the lower portion of the side closest to the handle.
- Connect nozzle to a clean water source of at least 40 psi. Rotate the nozzle inside the container to assure good coverage of all sides, including the handle.
- Rinse at least 30 seconds.
- Rinse cap under water coming out of the jug and into the spray tank and then dispose of cap appropriately as regular solid waste.
- Drain all rinse water into the spray tank.
- Look closely at the containers inside and out to make sure that all pesticide has been removed.
- Allow containers to dry.
- Store cleaned jugs and caps where they will be protected from rain until they can be recycled or disposed of properly.
- Oregon requires that an appropriate solvent be used for rinsing and that 1- and 5-gallon metal containers be punctured at least three times with 1-inch holes and then crushed.

DRUMS

- Be sure the drum is completely empty.
- Drill a pilot hole in the bottom of the drum and then position the drum mouth over the spray tank so that rinse water will empty directly into the tank.
- With the water turned off, use the pressure rinse nozzle to widen the hole in the bottom.
- Turn water on and rotate the nozzle inside the drum to rinse all sides.
- Rinse drum at least 30 seconds or until rinse water runs completely clear.
- Rinse cap under water coming out of the drum and into the spray can and then dispose of appropriately as regular solid waste.
- Turn water off and replace the tip guard on the nozzle.
- Look closely at the containers inside and out to make sure all pesticide has been removed.
- Allow containers to dry.
- Store drums where they will be protected from rain until they can be recycled or disposed of properly.
- Oregon requires an appropriate solvent be used for rinsing and that the tops and bottoms of 30- and 55-gallon drums be removed and the container flattened after it has dried.

Cleaning Paper or Plastic Sacks and Fiber Containers

- Empty the contents completely into the application equipment. You may need to cut open the container to clean out all the material in the seams. Never rip the container; use scissors or a knife but not a personal pocketknife. Do not let material blow around.
- Wear appropriate personal protective equipment, including breathing protection if necessary.
- If possible, rinse the container. Some containers have plastic or foil liners that can be rinsed. Use the rinsate in the spray mixture or collect it for disposal.
- Once the containers are clean, dispose of them as regular solid waste. Do not burn the containers. Burning can release poisonous fumes and is illegal.

Recycling Procedures for Plastic Containers

DISPOSAL AND RECYCLING

Proper disposal or recycling of pesticide containers helps to protect the environment and helps promote a positive image of agrichemical users. Recycling also saves money for the pesticide user and for local landfills.

LANDFILL PROCEDURES

Landfills accept only containers that have been cleaned. Some landfills inspect containers and/or require written verification of their cleanliness. Disposal site locations are listed below.

Idaho, Oregon, and Washington have programs to collect and recycle clean plastic pesticide containers. The following steps will help in the recycling process. For times and places of recycling events, see the appropriate state contact listed below.

- Only clean, dry plastic containers can be accepted.
- Remove slip-on labels and label booklets. Glued labels may stay.
- Remove hard plastic lids and place them in a separate container for recycling.
- Remove most of the foil seal from around the opening of the container. A small amount of foil is acceptable.
- Remove lids and metal bails from 5-gallon buckets. Lids from buckets are accepted if metal rings and rubber gaskets are removed. Containers of 5 gal and smaller are accepted whole.
- Do not put plastic lids back on empty containers. This inhibits container inspections.
Disposing of Unusable Pesticides and Agricultural, Household and Residential Pesticide Products

Unusable pesticide is regulated as a hazardous waste and needs to be disposed of according to Resource Conservation and Recovery Act (RCRA) regulations. Be sure to check the pesticide label for instructions on disposing of pesticides — this includes both agricultural, household and residential pesticides. The EPA advises consumers to call local authorities for specific disposal instructions. This is to provide state and local government greater latitude in carrying out their responsibilities for product disposal and waste management. Specific instructions will be provided for products based on formulation.

Household and Residential Unusable Pesticide Products and Containers

Labels on aerosol products will state: “Do Not Puncture or Incinerate! If empty, place in trash or offer for recycling if available. If partly filled, call your local solid waste agency or 800-CLEANUP (253-2687) or other qualified number for disposal instructions.”

Labels on all other types of products will state: “If empty: Do not reuse this container. Place in trash or offer for recycling if available. If partly filled: Call your local solid waste agency or 800-CLEANUP (253-2687) or other qualified number for disposal instructions.” This includes liquids, tablets, dusts, gels, pet products, etc., in other types of containers such as bags, bottles, bait stations, etc.

Pesticide Recycling and Disposal Contacts (Agricultural and Household Products)

Idaho

Recycling
Northwest Ag Plastics, Inc.
509-457-3850
http://www.nwagplastics.com/

Disposal
Contact Vic Mason, Idaho State Department of Agriculture
208-332-8628
Email: vic.mason@agri.idaho.gov

Oregon

Household Waste
A toll free number (1-800-732-9253) is available to residents statewide to find out information about household hazardous waste collection programs. Information on state and local government sponsored household hazardous waste collection events can be found in the following links.

Household Hazardous Waste Program:
http://www.deq.state.or.us/lq/sw/hhw/index.htm

Oregon Household Hazardous Waste Collection Event Schedule:
http://www.deq.state.or.us/lq/sw/hhw/events.htm

Locally Sponsored Collection Programs:
http://www.deq.state.or.us/lq/sw/hhw/collection.htm

Recycling
Agri-Plas, Inc.
503-390-2381
http://www.agriplasinc.com/

Washington

Recycling
Northwest Ag Plastics, Inc.
509-457-3850 ; http://www.nwagplastics.com/

Disposal
Washington State Department of Agriculture:
http://agr.wa.gov/PestFert/Pesticides/WastePesticide.aspx

You may call toll free at 1-877-301-4555 or email WastePesticide@agr.wa.gov

Hazardous Waste
Washington State Dept of Ecology 360-407-6000
http://www.ecy.wa.gov/ programs/hwtr/

Northwest Regional Office (Bellevue) 425-649-7000
Southwest Regional Office (Lacey) 360-407-6300
Central Regional Office (Yakima) 509-575-2490
Eastern Regional Office (Spokane) 509-329-3400

Pesticides and Water Quality

Proper handling, use, and disposal of pesticides are critical for preventing adverse impacts on water resources. Environmental pollution can occur when pesticides enter surface and ground water systems through misapplication, movement of treated soils, irrigation return flows, runoff from urban and agricultural land, storm water runoff, and leaching through soils. It is important to know the pesticide and soil properties to help avoid water contamination. Your local NRCS Soil Conservationist can provide you with more site specific pesticide and soil properties information. For additional information and links to publications on this topic, visit:

- Oregon Department of Agriculture https://www.oregon.gov/ODA/programs/Pesticides/Water/Pages/AboutWaterPesticides.aspx
- Washington Department of Agriculture http://agr.wa.gov/PestFert/natresources/WaterResourcesProtection.aspx

Water Quality Related Databases

State and county offices of the USDA-Natural Resources Conservation Service will provide decision aids and risk assessment tools to predict groundwater and surface water vulnerability to pesticide contamination. The decision aids utilize pesticide properties and soil types to help predict site-specific vulnerabilities. http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/

Clean Water Permits for Certain Pesticide Applications

A permit is required for certain pesticide applications in, over, or near waters of the State and/or United States. A National Pollutant Discharge Elimination System (NPDES) pesticide general permit and a Notice of Intent (NOI) may be required before an aquatic
application or pesticide application near waterways. Be sure to check the state and federal regulations.

Oregon: https://www.oregon.gov/ODA/programs/Pesticides/Water/Pages/AboutWaterPesticides.aspx

Pesticides, Endangered Species, and Mandatory No-spray Buffer Zones

No-spray buffers have been established for some pesticides in some areas of Washington and Oregon. Buffers extend 60 ft by ground and 300 ft by air from affected water bodies. For a list of pesticides and buffer requirement: http://www2.epa.gov/endangered-species/salmon-mapper

The EPA reviews pesticides for their effects on endangered species. The list of affected pesticides can change frequently; therefore, consult the list each time before applying pesticides in affected areas. EPA publishes Endangered Species Protection Bulletins that set forth geographically specific pesticide use limitations for species protection. The pesticide label will direct you to the Bulletins Live! Website (http://www.epa.gov/oppfead1/endanger/bulletins.htm) and you are required to follow the pesticide use limitations. Direct any questions to your state department of agriculture.

Pollinator Protection

In an effort to protect pollinators from certain types of insecticide applications, EPA has revised the labels of neonicotinoid insecticides (imidacloprid, dinotefuran, clothianidin, thiamethoxam) to include pollinator protection instructions. These special instructions are included in the “Directions for Use” section of the label. A bee advisory box and icon appear on the label and contain information on routes of exposure and spray drift precautions. EPA is continuing to review the toxicity of certain pesticides as a result of direct treatment and their extended residual toxicity.

Special Pesticide Registration Options

Pesticides are federally registered by the U.S. Environmental Protection Agency (EPA) under Section 3 of the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) as amended. This law also contains two provisions for states to obtain certain pesticide uses to address local pest management needs:

- Emergency exemptions from registration under Section 18
- Special local needs registrations under Section 24(c)

Emergency Exemptions Under Section 18

Section 18 of FIFRA provides that the Administrator of EPA may exempt certain federal and state agencies from any provision of the Act if it is determined that emergency conditions exist. Section 18 authorizes EPA to allow states to use an unregistered use

of a pesticide, or a pesticide that does not have a tolerance for the food or feed crop to be treated, for a limited time.

EPA regulations for Section 18 provide four types of emergency exemptions: specific, public health, quarantine, and crisis.

Special Local Needs Registrations - Section 24(c)

In each state the department of agriculture is the designated lead agency responsible for registering pesticides to meet special local needs under section 24(c) of the FIFRA. A special local need (SLN) is defined as, “an existing or imminent pest problem within a State for which the State lead agency, based upon satisfactory supporting information, has determined that an appropriate federally registered pesticide is not sufficiently available.”

Each state is authorized to register a new end use product for any use, or an additional use of a federally registered pesticide product, under the following conditions:

- There is a special local need for the use within the state.
- The use is covered by necessary tolerances, exemptions or other clearances under the Federal Food, Drug and Cosmetic Act, if the use is a food or feed use.

SLN registrations have been useful particularly to growers of minor crops, who often have limited access to pest management options. Types of SLN registration requests considered include: adding a crop or site; incorporating an alternate application method, such as chemigation or dip (e.g., for bulbs); changing application timing; encouraging the use of reduced-risk pesticides or pesticides that facilitate resistance management; or modifying the application rate.

Contact the local State Department of Agriculture for specific instructions on Section 18 and 24c registrations:

Oregon: http://www.oregon.gov/ODA/PEST/Pages/contact_us.aspx

Washington: http://agr.wa.gov/PestFert/Pesticides/ProductRegistration.aspx

Regulatory Authorities

The specific laws and regulations governing use, storage, disposal, and transportation of pesticides differ slightly in each northwestern state. Before you use pesticides, obtain a copy of the detailed pesticide use laws and rules for the state(s) in which you are operating. The state-specific pesticide laws and rules can be found at each state department of agriculture website.

IDAHO

For regulations on hazardous waste:

Department of Environmental Quality
1410 North Hilton
Boise, ID 83706-1255
208-373-0502; http://www.deq.state.id.us/

OREGON

WASHINGTON

http://agr.wa.gov/PestFert/Pesticides/
Additional Pesticide Information

Note: The table below is not a complete listing of websites containing additional information on pesticide use and safety. The presence or absence of a given website below does not constitute an endorsement of one website over another.

<table>
<thead>
<tr>
<th>Website Information</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Data Management Systems (CDMS): A searchable database of print-on-demand pesticide labels including many SLN 24(c)</td>
<td>http://www.cdms.net/manuf/default.asp</td>
</tr>
<tr>
<td>A searchable database of pesticides registered with the Idaho Dept. of Agriculture</td>
<td>http://www.kellysolutions.com/id</td>
</tr>
<tr>
<td>NPIC (National Pesticide Information Center): A source of scientific, unbiased information</td>
<td>http://npic.orst.edu</td>
</tr>
<tr>
<td>Pesticide Information Center On-Line (PICOL): A searchable database of Washington and Oregon registered pesticides</td>
<td>https://picol.cahnrs.wsu.edu/</td>
</tr>
<tr>
<td>Pesticide toxicology information at EXTOXNET</td>
<td>http://extoxnet.orst.edu/</td>
</tr>
<tr>
<td>Northwest Coalition for Alternatives to Pesticides</td>
<td>http://www.pesticide.org/</td>
</tr>
<tr>
<td>A searchable database of pesticides registered with the Oregon Dept. of Agriculture</td>
<td>http://oda.state.or.us/dbs/pest_productsL2K/search.lasso</td>
</tr>
<tr>
<td>Idaho State Dept. of Agriculture</td>
<td>http://www.agri.idaho.gov</td>
</tr>
<tr>
<td>Washington State Dept. of Agriculture</td>
<td>http://agr.wa.gov/</td>
</tr>
<tr>
<td>Oregon State Dept. of Agriculture</td>
<td>http://oregon.gov/ODA/</td>
</tr>
</tbody>
</table>

Worker Protection Standard (WPS) for Agricultural Pesticides

Key Features

The U.S. Environmental Protection Agency (EPA) revised the Worker Protection Standard for Agricultural Pesticides (WPS), on November 2, 2015. The WPS revisions are intended to decrease the pesticide exposure incidents among farmworkers and their family members. The WPS is designed to protect employees of farms, forests, nurseries, and greenhouses from occupational exposure to agricultural pesticides.

The WPS contains requirements for notifying employees of applications, the use of personal protective equipment, and restrictions on entry to treated areas. Additionally, the WPS also requires certain actions by employers to ensure worker safety. The WPS requires the registrants of pesticides to add label references to the WPS and to list specific application restrictions and other requirements.

Most of the revised WPS requirements became effective on January 2, 2017. Three requirements go into effect on January 2, 2019: https://www.epa.gov/pesticide-worker-safety/agricultural-worker-protection-standard-wps

1. Pesticide safety training must cover the expanded content;
2. Pesticide safety information (posters) must meet the revised standards;
3. Handlers must suspend applications if workers or other people are in the application exclusion zone.

WPS provisions are directed toward two types of employees:

- Pesticide handlers—Those who mix, load, or apply agricultural pesticides; clean or repair pesticide application equipment; or assist with the application of pesticides.
- Agricultural workers—Those who perform tasks related to growing and harvesting plants on farms or in greenhouses, nurseries, or forests for any type of compensation.

Pesticide Products Covered by the WPS

The WPS covers nearly all pesticide products used to produce plants commercially, including pesticides used on soil and potting media. It also covers restricted-use and general-use products. WPS provisions are intended to:

1. Minimize worker exposure to pesticides
2. Mitigate any exposures
3. Inform employees about the hazards of pesticides

The new revisions of the Worker Protection Standard are very extensive and detailed. An EPA funded “Pesticide Educational Resources Collaborative” PERC has all of the information on the new Standard. It is recommended that everyone visit the PERC website to obtain training materials and WPS Handouts, such as the Quick Reference Guide, Checklists for Employers, and Compliance Requirement Schedule. http://pesticideresources.org//index.html

Idaho

Luis Urias
Idaho State Department of Agriculture
Division of Agricultural Resources, Boise
208-332-8663
luis.urias@agri.idaho.gov

Oregon

Oregon Department of Agriculture
Pesticides Division
503-986-4652

Washington

Washington Department of Agriculture
Pest Management Division
PO Box 42589
Olympia, WA 98504
360-902-2015
http://agr.wa.gov/PestFert/Pesticides/WorkerProtection.aspx

Information is also available from your local Extension educator.
Duties for ALL Employers

These requirements apply to agricultural employees and commercial pesticide handler employees except the pesticide safety, application and record-keeping requirements apply only to agricultural employees.

Anti-Retaliatory

Employees must not retaliate against a worker or handler who attempts to comply with the WPS. File a complaint, or provide information in an investigation of alleged WPS noncompliance.

Minimum Age Requirements

1. Ensure that early-entry workers and all handlers are at least 16 years old. 215-208.07 (a) and 215-208.13 (a)

Pesticide Safety, Application and Hazard Information

An agricultural employer must provide or make written information available on the establishment. Commercial pesticide handler employers do not have to comply with the information display requirements.

1. Display or make available all of the information listed in the treaty in an easily accessible format located on the agricultural establishment. 215-208.03 (a) and 215-208.13 (b)

Information includes:

- EPA WPS safety poster or equivalent information, which must include some additional information by January 1, 2018, and must be kept current. 215-208.3 (a)
- Application information that includes:
 - Product name, EPA registration number, and active ingredient.
 - Crop or site treated, location and description of the treated area.
 - Date, start and end time of the application, and duration of restricted-entry interval (REI). 215-208.11 (a)
- A copy of all the safety data sheets (SDS) for the products to be used. 215-208.12 (a)

2. In addition, display the EPA WPS safety poster or equivalent information where pesticide supplies are located at permanent storage and where equipment supplies are provided for 1 or more workers. 215-208.3 (a)

3. Display the SDS and the Restricted Entry Interval for all the product information and before workers enter treated areas. 215-208.11 (a)

4. Display the EPA WPS safety poster or equivalent information if an application takes place for 3 days after the REI expires. 215-208.14 (a)

5. Display the REI and the Treatment Interval for all products used to protect workers entering treated areas. 215-208.11 (a)

Pesticide Safety Training

Ensure that workers are trained before performing tasks in a pesticide-treated area. REI in effect within the last 30 days. 215-208.18 (a) Ensure that handlers are trained before performing any handler tasks. 215-208.18 (a)

1. Training courses and training duration. 215-208.14 (a) and 215-208.15 (a)

2. Training must be supervised by a state or approved pesticide safety program. 215-208.14 (a) and 215-208.15 (a)

3. Training consists of the following:

- Classroom training
- Field training
- Hands-on training

4. Training must be delivered to the employees in accordance with the REI. 215-208.14 (a) and 215-208.15 (a)

5. Training must be documented. 215-208.14 (a) and 215-208.15 (a)

6. Records must be maintained for 2 years from the training date for each farm and handler. 215-208.14 (a) and 215-208.15 (a)

Continued on next column

Employees who are under the age of 16 years old, or 16 years old may not enter a restricted-entry area. 215-208.07 (a)

Employer Responsibilities for Supervisors and Labor Contractors

An agricultural employer must provide adequate training for their employees and labor contractors to ensure compliance with the WPS, regardless of the training is used:

- The training supervisor must be a state or approved pesticide safety program.
- The information they must provide to their employees and labor contractors must be in written form.

This is a summary of the requirements. It does not contain all the information to comply with the revised WPS. Refer to the regulations where indicated for complete details.
Additional Duties for Worker Employers

Restrictions During Applications 170.405 (a)(b)
During pesticide applications, keep workers and everyone other than appropriately trained and equipped handlers out of the treated area (for all types of applications) and out of:
- The application exclusion zone (AEZ) for outdoor production, or
- A specified area that varies by the type of application until the ventilation criteria are met for enclosed space production.

Restricted-Entry Intervals (REIs) 170.309 (g) and 170.407
Do not direct or allow any worker to enter or remain in the treated area unless the REI has expired and all posted warning signs are removed or covered. Read the exceptions in 170.603.

Notice About Applications 170.409 (a)
1. Orally warn workers and post treated areas if required by the pesticide labeling.
2. If not, post warning signs if the REI is greater than:
 - 48 hours for outdoor production or
 - 4 hours for enclosed space production.
3. For all other applications, orally warn workers or post warning signs.

Posted Warning Signs 170.409 (b)
1. Post legible 14" x 18" WPS-design warning signs no more than 24 hours prior to an application; keep posted during REI; remove or cover before workers enter and within 3 days after the end of the REI. 170.409 (b)(1-3)
2. Post signs so they can be seen at all reasonably expected entrances to treated areas. 170.409 (b)(3)(b)
3. Warning signs can be smaller than 14" x 18" under certain conditions. All warning signs must meet specific requirements. 170.409 (b)

Oral Warnings 170.409 (c)
1. Before each application, tell workers who are on the establishment (in a manner they can understand):
 - Location and description of treated area,
 - Date and times entry is restricted
 - AEZ, REI, and not to enter during REI.
2. Workers who enter the establishment after application begins must receive the same warning at the start of their work period.

Additional Duties for Handler Employers

Application Restrictions and Monitoring 170.505
1. Do not allow handlers to apply a pesticide so that it contacts, directly or through drift, anyone other than appropriately trained and equipped handlers.
2. Handlers must suspend applications when anyone other than appropriately trained and equipped handlers enter the application exclusion zone (AEZ). This goes into effect on January 2, 2018. 170.505 (d)
3. When anyone is handling a highly toxic pesticide with a skull and crossbones, maintain sight or voice contact every two hours.
4. Make sure a trained handler equipped with labeling-specific PPE maintains constant visual or voice contact with any handler in an enclosed-space production site (e.g., greenhouses, high tunnels, indoor grow houses) while applying a fungicide.

Specific Instructions for Handlers 170.505 (e)
1. Before handlers do any handling task, inform them in a manner they can understand, of all pesticide labeling instructions for safe use. 170.505 (a)(1)
2. Ensure that the handler has access to product labeling during the entire handling task. 170.505 (a)(2)

Equipment Safety 170.505 (f)
1. Inspect pesticide handling equipment before each day of use, and repair or replace as needed. 170.505 (g) and 170.313 (g)
2. Allow only appropriately trained and equipped handlers to repair, clean, or adjust pesticide equipment that contains pesticides or residues, unless they are not employed on the establishment. 170.505 (g) and 170.507 (a) See Additional Agricultural Employer Duties for information regarding non-employed persons.

Personal Protective Equipment (PPE) Handlers Must Use 170.507 (a)(b)
1. Provide handlers with the PPE required by the pesticide labeling, and be sure it is:
 - Clean and in operating condition. 170.507 (b)
 - Worn and used according to the manufacturer's instructions. 170.507 (c)
 - Inspected before each day of use, 170.507 (c)(2)
 - Repaired or replaced as needed. 170.507 (c)(2)
2. When a respirator is required by product labeling, provide handlers with:
 - A medical evaluation to ensure the handler is physically able to safely wear the respirator,
 - Training in respirator use, and
 - A fit test to ensure the respirator fits correctly.
 - Keep records on the establishment of these items for two years. 170.507 (b)(10)
3. Take steps to avoid heat-related illness when labeling requires the use of PPE for a handler activity. 170.507 (a)
4. Provide handlers a pesticide-free area for:
 - Storing personal clothing not in use,
 - Putting on PPE at start of task,
 - Taking off PPE at end of task. 170.507 (d)(9)
5. Do not allow used PPE to be taken home. 170.507 (d)(10)

Care of PPE
1. Store and wash used PPE separately from other clothing and laundry. 170.507 (d)(12)
2. If PPE will be reused, clean it before each day of reuse, according to the instructions from the PPE manufacturer unless the pesticide labeling specifies other requirements. If there are no other instructions, wash in detergent and hot water. 170.507 (d)(11)
3. Dry the clean PPE before storing. 170.507 (d)(4)
4. Store clean PPE away from personal clothing and apart from pesticide-contaminated areas. 170.507 (d)(15)

Replacing Respirator Purifying Elements 170.507 (d)(18)
1. Replace particulate filters or filtering facepiece respirators when any following condition is met:
 - A breathing becomes difficult,
 - The filter is damaged or torn,
 - The respirator label or pesticide label requires it,
 - After 8 total hours of use, in the absence of any other instructions or indications of service life. 170.507 (d)(18)
2. Replace vapor-removing cartridges/canisters when any following condition is met:
 - When odor/taste/irritation is noticed,
 - When the respirator label or pesticide label requires it (whichever is shorter),
 - When breathing resistance becomes excessive,
 - After 8 total hours of use, in the absence of any other instructions or indications of service life. 170.507 (d)(17)

Disposal of PPE 170.507 (d)(17)
1. Discard, do not clean, covers all and other absorbent materials that are heavily contaminated with pesticide having a signal word "DANGEROUS" or "WARNING." When discarding PPE, ensure that it is unusable as apparel or made unavailable for further use.
2. Follow federal, state, and local laws when disposing of PPE that cannot be cleaned correctly. 170.507 (d)(22)

Instructions for People Who Clean PPE 170.507 (d)(16)
The handler employer must inform people who clean or launder PPE:
- That PPE may be contaminated with pesticides,
- Of the potential for harmful effects of exposure to pesticides,
- How to protect themselves when handling PPE,
- How to clean PPE correctly, and
- Decontamination procedures to follow after handling contaminated PPE.

Additional Agricultural Employer Duties

Before allowing persons not directly employed by the establishment to clean, repair, or adjust pesticide application equipment, provide the following information:
- The equipment may be contaminated with pesticides.
- The potential harmful effects of pesticide exposure.
- How to handle equipment to limit exposure to pesticides.
- How to wash themselves and/or their clothes to remove and prevent exposure to pesticide residues. 170.309 (g) and 170.313 (g)